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Abstract— We introduce a new method based on Bayesian II. BAYESIAN NETWORK FORMALISM
Network formalism for automatically generating incomplete
datasets. This method can either be configured randomly to
generate various datasets with respect to a global percentagé o Bayesian Networks aim at modelling complex systems
missing data or manually in order to handle many parameters. [10], [11] by taking graphically into account conditional

[1] proposed three types of missing data : MCAR fnissng . :
completly at random), MAR (missing at random) and NMAR (not independences between variables (by means of a directed

missing at random). The proposed approach can successfully CYclic graph) and by giving a compact representation of
generate all MCAR data mechanisms and most of MAR data the joint probability distribution as the product of local
mechanisms. NMAR data generation is very difficult to manage conditional probability distributions (one for each node i
automatically but we propose some hints in order to cover some h

prop the graph).
of the NMAR data situations. In this paper, we are going to ugeactur font for proba-

. INTRODUCTION bility distributions,SCRZP7T font for random variables and

Software testing is a time-expensive component of soffold font for instantiations. Moreover, we will use Normal

ware development. A particulary labor-intensive companeriont for nodes whiph represent random variables in Bayesian
of this testing process is the generation of test data {§etworks andltalic font for all other notations. N
satisfy testing requirements. This is the primary methof! @ Bayesian Network, we have the following decomposition
to establish confidences in the performances of softwared the joint probability distribution:

A. Preliminaries

These confidences are ordinarily established by executing n
the algorithm on test-data chosen by some systematic gestin P(Xy, Xy, -+, &) = [ [ P(Xi[Pa(X)) 1)
procedure. =1
Through the years, various methods for generating tesisherePa(X;) is the random vector built from the parent set
data have been proposed. of node X% in the graph associated to the Bayesian Network.
These methods have been divided into three classes [2] : Bayesian Networks, as other probabilistic models, can
o Random test-data generation [3], [4], be used as generative models, that's why we choose this

« Structural or path-oriented test-data generation [5], [6formalism to generate Test-Data.
(for instance with mutation analysis and constraint sat-

ifaction [7]) and B. Sampling in Bayesian Networks
« Goal oriented test-data generation [8] (for instance with The first idea of stochastic methods is using knowledge
genetic algorithms [9]). about a distribution (here conditionnal probabilities)atato-

Our approach could be C|assify in the random test-daf@atica”y generate Samples fOllOWing this distribution.
generation class as it selects inputs randomly from the un- Probabilistic logic sampling [12] is the simplest and the
derlying probability distribution given by a specific Bajars ~first proposed sampling algorithm for Bayesian Networks.
Network. Rejection sampling could be used whens not known and
Another field of application of our work concerns Machineif @ functionQ that satisfyl < < M is known, whereM
Learning : learning algorithms also have to be comparel§ @ known bound. The generated sample is accepted with the
in various contexts. Some of them deal with incomplet@robability MP?((@)&)- So if M is too large, we rarely accept
databases but available datasets with incomplete datatdo fa@mples.
cover all the missing data processes with various missing Importance sampling [13], [14] is close to the logic
data rate. sampling algorithm except that the importance functi@n
Our method aims at modelling missing data processés updated to periodically revise the conditional probiail
using Bayesian Network formalism, in order to automaticall tables in order to make the sampling distribution gradually
create incomplete datasets with different charactesistic ~ approach the posterior distribution. The generated safsple
We first introduce Bayesian Network formalism and itsaccepted with the probabilitynin (1, %).
use for data generation. The next section is devoted to Another family of stochastic sampiing methods is formed
missing data mechanisms. We then propose to model thdse so-called Markov Chain Monte Carlo (MCMC) methods
mechanisms with Bayesian Networks and give some hints that are divided into Gibbs sampling, Metropolis sampling,
order to constraint the global percentage of missing data. and Hybrid Monte Carlo sampling [15], [16]. When applied
. . . to Bayesian Networks [17], [18], [19], those approaches
INSA Rouen, LITIS — Information Processing and Computer Smen . . L . . .
Lab, BP 08, 76801 Saint-Etienne-Du-Rouvray Cedex, France determine the sampling distribution of a variable from its
(email: Francois.Olivier.C.H@gmail.fr; Philippe.Leray@a-rouen.fr). previous sample given its Markov blanket [20].




Gibbs sampling is a special case of Metropolis-Hastings Notice that in these notations, the dataBets a complete
algorithm which is applicable to state spaces in which weataset. The variableg)g are measured i, but "forgotten”
have a factored state space and access to the full condétiondecause ofR variables.D,,cqsurea = {O, H = missing}

So it is perfect for Bayesian Networks. is the "real” incomplete dataset containing or@y.

The idea is to transit from one state (variable assignment) Our approach will sampl® and R from distribution®

to another iteratively. The algorithm is simple and could bandfi that are modelled by a Bayesian Network. The output

describe as follows : IS Dyneasurea Which is built by taking only the valuex{ in
1) pick a variable, D wherer; = 0.
2) sample its value from the conditional distribution, As a lot of distributions are concerned, assumptions have

3) goto step 1) until all variables are not instanciated. ~ to be made to simplify the model, but before, let us describe
The importance ratio is the different missing data mechanisms.

| pt—1
r= P?(f—)gg(ut—w) ] =1 asQ = P in the Gibbs sampler, B. Missing Data mechanisms
X T X

so we always accept the new sample. Rubin [1] has highlighted that

We propose to use the Gibbs sampler. Let choose the B
variable in step 1) in the set of root nodes as tleejriori P(O, M, RIf, u) = P(O, H|) - P(R|O, K, 1) @)
probability tables give the optimal importance functioh. | 3s? does not depend oftand D does not depend op.
there is no more root nodes, let pick a node that have all its we can distinguish three missing data mecanisms

parent set instanciated. according to the distributio?(R|O, H, ).

C. Random generation of Bayesian Network structures a) MCAR: The data is said to blissing Completely

As the proposed approach is aimed to build datasets frogt Random In this case, the missing data is independent
various mechanisms of data generation and deletion, itldhowither of the observed ones, and of the others missing data

be judicious to randomly generate Bayesian Network strugmg P(R|O, H, 1) = P(R|p) (for instance]P’(R{ =1) =aq,
tures. For instance, [21] or [22] have proposed methods f@r all ;i and j).

random generation of bayesian networks based on Markov

chains. b) MAR: If we consider the situation where a data

is not systematically measured for a special configuration

of the other variables then this data is said to Nssing

A. Notations At Random Here, the missing data is dependent of the
Let n and m be natural integers and let Observed ones, but is independent of the others missing

XL XL X2 X™ be n x m random variables data, i.eP(R|O,H,p) = P(R|O, ).

that respectively follow distribution&?, for 1 < < n and

1 < j < m. Suppose that we have a dataset c) NMAR: In the last situation, a missing data can
be a consequence of the actual state of any variable and

we can not simplifyP(R|O, H, 11). The data is said to be

. _ . o Not Missing At Randomas it could exists deterministic
This datasetD is an instantiation of the random vectormechanisms to empty the dataset. For instance, we can

IIl. INTRODUCTION TO MISSING DATA

D= (Xf,...., %, X121’ s Xé"’)- ;I'his vectorD follows the  jmagine that variablet’ can not be measured between times
distribution ® = (Xy,...,X;, X7,..., X7). Let 0 be the ¢ and¢+ T because of a sensor failure. Even if the fact that
parameters of. Let x; be the instantiation of; in D. the sensor failure is non-deterministic, the fact that data

missing depends on time and then the dataset should not be
Let R = (Ri,...,R},Ri,...,Ry) be the random jid any longer.
vector where the random variablR] takes the valud if
X} is said to be missing and takes the valddf X7 is C. Assumptions for MAR and NMAR situations

observed. Usually, we assume that data are independent and identi-
The random vectoR follows a distribution named cally distributed {i.d). Samplesx/ = (x{, -+ ,xJ) do not
R=(Ri,..., R, R,...,N7). Let i be the parameters of depend to each other This hypothesis leads to the following
the d|Str|bUt|0nm ] ] assumption :
LetR = [[r] . be the matrix where! = 0 if X7

1< <

is observed and <if'7r1<_ot.

Finally, letO = {xg}{(i ) ri—o} be the part of the dataset

D that will be observed ’amj & — {Xj}{( N be the Another hypothesis that is often made is the stationnarity.
i i,J)[rs=1

part of the dataseb that will not be observed and In other term, we suppose that the sampling distribution
do not vary during the sampling phase. This claim can be

D={0,H} reformulate as

Al:"if j # 1, random variablest! and X}
are independent”
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context is clear.
To be coherent, the same assumptions will be made on

A2: "For all j, distributionsX/ are the same” random structure
In the following, we will forgot the j’ by calling this unique @ 7 @ 7 @
distribution X; and will do the same for variable%; if the \
distributions R} as there is no reason that the missingness / \
mechanism varies over time. This claim implies the two @ 9] a a
following assumptions: ) )
A3:"if j # 1, random variablesR! and R, possible edges
are independent” p) )

A4: "For all j, distributions?t/ are the same

For the remainder of this paper, we will forgot thg index
by naming this unique distributioft; and will do the same
for variablesR; if the context is clear.

As the dataset we want to creatd.iqd, the fact that a data
is missing does not depend on the next of previous values in

the dataset. This claim implies that wheres; denote the size of the variabf. Notice that using
A5: "if j + 1, random variablesﬂgj and R zero probabilities in CPTs could intrqdupe independencies
For instance, here, the fact tha&t; = missing depend only
on the valuel for R;.
In section VI, some hints will be given to soften some of The two next sections will describe our modelisation for
these assumptions in NMAR situations. MCAR and MAR mechanisms. We will then adapt these
models in order to take into account some NMAR situations.

Fig. 1. Generic Bayesian Network for incomplete Test-Dataegation.

are independent”

D. Our general approach

The approach we propose here stands for Bayesian Net- IV. MCAR MECHANISMS MODELING

work formalism. We first assume that we have a generativd. The model

modelxthat can bg use to gengrate a complete datgset. Thisyiethods that have been proposed for MCAR dataset
model is the bayesian network in the top box of the figure Jyeneration usually remove data for each variable with the
It only contqins variableg’i that are represented by nodesggme probabilityy. We propose here a more general method
named X using assumption Al and A2. where a different "missing” probability is associated tclea

We then have to add new variabl®; in this model in ygriaple.
order to indicate if each variabl; is measured or not. Using  ag P(R|O, H, ) = P(R|p) for MCAR mechanisms and
assumptions A3 and A4, we will represent those variables Ryith assumption A3, we have
nodes named R

The output sample of our approach are the values of nodes
M; which are evaluated using only; X and R’s values.

Not only the way we will connect nodes; RX; and M,
together will lead us to MCAR or MAR situations but alsobut we can’t have a smaller decomposition as independences
the way we create Conditional Probability Tables as we couletweenR;, for a given j, are not known. But, with
include independencies from these tables. assumption A4, they do not depend pn

As, for the samplej, variable M; takes either the value ~ Then in a MCAR process, we can imagine having rules
taken by.; if R; = 0 or the valuemissing if R; = 1, its Such as : "ifx; is missing then), is missing too”.

m

P(Rlp) = [[P(RY, -, Riln) (4)
j=1

Conditionnal Probability Table (CPT) is known and is In a MCAR mechanism,M; depend onR; and &,
for fixed ¢, but R;'s could have interdependencies when
M, 1 |vg|v... |0y |missing yaries. The way we represent a generic MCAR mechanism
Xi, R is illustrated in figure 2.

P(M;|X; =v; ,R;=0) |1]/0/ 0] 0 0 In a first subsection we are going to highlight some
P(M;|X; =v ,R;=0) |0[1]0]0 0 parameters that have to be fixed and how to fix them. Then
P(M;|X; =v..,R; =0) |[0|0] 1]0 0 3) we are going to built a simple MCAR mechanism and explain
P(M;|X; =wvs,,R;=0) [0[0| 0|1 0 how it works.
P(M;[X; =v; ,R; =1) |0]0]0]| 0] 1 o
P(My|X; =v5 ,R;=1) |0]0| 0] 0O 1 B. Identifying parameters
P(M;|X; =v..,R;=1) |0|0| 0|0 1 The only parameter users usually want to specify is the
P(M;|X; =vs,,R; =1) |0|0| 0|0 1 goal probability of missingness. Letbe that goal. With our




random structur random structur
- <~f - <~f

possible, ges no edge
Rl oo R| Rn Rn
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N / ——

Fig. 2. Bayesian Network modelization for MCAR mechanism. Fig. 3. Bayesian network modelization for MAR mechanism.
notations, we have D. General situation
E(R) = (5) In pratice, one could prefer to build more general MCAR
1 ‘ mechanism. In this situation, edges between nodekave
whereR = —— Y "R/, to be created. The model that is schematized by the figure 2
oM is obtained. The previous method proposed to fill the prob-

Th A3 and Ad E(R! ability tables does not work anymore as we have to specify
en assumptions an gE(R) = Z Ri) values for Conditional Probability Tables (CPTs) inste&d o

o 1oy 1 priori probability tables. The methodology used to determine
As E(R;) = Z r-P(R; =r)=P(R; = 1) we have the CPTs is close to the one presented in section IV-B and
re{o.1} will be presented in section V-B as we also use it in a more

1 general way for MAR mechanisms.
=-> PR =1) (6)
n— V. MAR MECHANISMS MODELING
A. The model
For MAR processes, nodes representing the missingness

To have an entirely automated (an randomized) method g} a variable can no longer be disconnected from observable
compute an incomplete dataset generation process we hav@@sles (remember th&(R|O, H, u) = P(R|O, n)) as we
build the 3's randomly. To do so, we could gener a randonfould see in figure 3.

In the following, let; be the probabilityP(R}! = 1).

vector [31, Bn_1] of n — 1 values infa — £, a +¢] C [0,1] Edges between N& and X’s are allowed to take into
n—1 account the fact that the probability of being missing is no

uniformly arounda an then choos@,, = n-«a — Z B;. more independent of the observable part of the system.
i=1 Here, we don't need edges betweer'sRanymore as

dependencies between’'&comes from the fact that ;Ris
dependent of some N and that M’s are dependent of some
Suppose we want to create MCAR data and we have tlgher R’s.

C. A simple example

following assumption (only for this example): With this model, we have to adjust the probability of a
"Random variablesR; and R, are marginally independent node to be missing with respect to other variable values.
if i £Ek". Then we have to fix random values far= (uipr )ik Where

Then we can represent our dependencies by the Bayesian 1
Network described figure 2 (but without any link between pivk = P(R; = b|Pa(R;) = k) (8)
the R’s). with 1 <i < n, b€ {0,1} andk € K; where K; is the set
To fill the a priori probability tables of nodes;Rwe have of possible configurations dPa(R;).
to generate the probability vectat = (51, - -- ,ﬁn) with As the probability of a node to be missing does not
depend on the unobserved part of the system, some other
constraints on the way to fix thg;,x’'s have to be made
Then, we simply have to use the result to bund tables  and we must have
P(R; = 1|Pa(R;) = completly missing) = (; and
P(R;) = [1 - Bi, ﬁi] (1)

respect to the constraint given by equatiom6= — Z Bi.



P(R; = 1|Pa(R;) = partially missing) =
=P(R; = 1|observed part oPa(R;))
which is obtained by inference in the bayesian Networl

70

60 b

B. Identifying parameters

Remember thap; = P(R,; = 1), then
B = > P(R; = 1,Pa(R;) = k) and the Bayes formt
k

50 g
40H] g

gives 30H] 8

Bi=> itk - Ein )

20 b
k

where &, = P(Pa(R;) = k). All the ¢ values can t
obtained by inference in the Bayesian Network. L
Then we simply have to use a methodology close ti T e T A TR TR
preV|OUS one used to gen@;'s to rand0m|y generate F khi-square values of parameters tested on generated datasets
rametersu; ;. with additional verification tests to validate ue
supplement constraints explained in the previous par&graprig. 4. Histogram of? value of parameters tested from generated samples.
Now suppose R has only one parent node ;M The
whole conditionnal probability tabl®(R;|Pa(R;)) is ther
completly determined by 1 \

10 b

percentage of parameters for a given khi-square value

0.9

¢ ,uiola"'7”1'0]63"'7”’1'081,;1761'
Hitl sy ik sty Hils; s Bi

0.8 b

wheres; is the size of the node Xand ;06 = 1 — 1151 orr 1

If R; has more than one parents, we have to conside
some ;. Must be identical and then, we simply hawi
sum the corresponding;, to factorise, and to use the s¢
kind of formula.

0.6 b

0.5 b

0.4

0.3

If the two last recommendations of section V-A are
checked, we need to model NMAR mechanisms. But
is a lot of ways to build such mechanisms. Let us give ¢
hints to built some of them.

0.2

percentage of parameters for a given khi-square value

0.1f

. . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
khi-square values of parameters tested on generated datasets
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VI. NMAR MECHANISMS MODELING

The main problem of NMAR mechanisms is that, in prac- Fig. 5. Zoom of the flat part of Figure.4.

tice, samples of the dataset are usually no loriget. The
number of NMAR mechanisms that could lead to pseudo-
real data is infinite as it depends on external factors, so we

are free to imagine all the factors we want. For the experimentation stage, we have used our formal-
A first hint to generate NMAR data is modifying the con-ism to generate datasets from randomly generated Bayesian
ditional probability densities previously described in RAr  networks (between 4 and 13 nodes). Those networks have
MCAR situations in order to lost the specific independenceseen used to gener MAR incomplete datasets With00
entailed in these densities. samples with a percentage of missingness which is randomly
Another solution will be the use of a dynamic bayesiachosen betweets% and40% (results on MCAR datasets are
network [23] to represent data samples that are time depesimilar). Then we pick up different parameters which model
dent, for instance by connecting;(t) to R;(t + 1). With  the percentage of missingness of an attribute in a specific
this solution the fact that a variable is missing will becomeontext for each incomplete dataset generative Bayesian
a Markov chain. network. We then calculate thg? critical value that this
Another mean could be to introduce one or many newarameter has if we test it on the corresponding generated
variables and to build dependencies betwé&gnand those dataset.
variables by drawing new edges on the Bayesian Network. In figure 4, an histogram of Chi-square values of param-
We could also imagine to mix all this processes. eters tested on generated datasets is shown.

VIl. EXPERIMENTATIONS



As we could see on figures 4 and 5, the distribution off4]
Chi-square values is high for small valuee(< 0.05) and
arround 65% of the parameters tested have a Chi—squarqS]
value smaller thar.01.

On figure 5, we could see that arround)2% of tested
parameters could have a fixed Chi-square value higher tha[r%;]
0.3. Those values are reach for parameters that lead to a smait|
number of samples in the datasets. Then the tests are not
reliable in this case as the number of corresponding sampleg,
is often smaller thar20 samples.

VIIl. CONCLUSION AND FUTURE WORK [9]

The method we proposed here aims at modelling missing
data processes using Bayesian Network formalism, in ord&io]
to automatically create incomplete datasets with difFErerEn]
characteristics. We first used a generative maodeab gen-
erate a complete dataset. We then added new varidbjes
and M; in this model in order to indicate if each variable
X; is measured or not and to give the value of the measur?gz]
variables. The connectivity between variablgs, M; and
X; and a specific form of the corresponding conditional
probability densities lead to MCAR or MAR models. We[3;
also proposed some first hints to adapt these models in order
to take into account some NMAR situations.

For each of the MCAR and MAR models proposed hergg 4
we also described how to randomly generate the parameters
with respect to the global probability of missingnessve
want to reach.

The methodology described here for discrete data genera-
tion can be extended to continuous data by using conditionﬁ%]
gaussian models fakt’ variables, and softmax functions for
P(R;|X;, Ry) conditional probability distributions.

An experimental phase has been done to show the reli’]
ability of such a method when we gener MAR incompletg;g;
datasets.

We have implemented all these modelsBNT Matlab
toolbox[24] and functions are freely available in tiStruc-
ture Learning Packagd25]. An application of this work
could be seen in [26] with more tha300 generated datasets. 21]

We plan to identify some usual NMAR situations ano[
model those situations with the method proposed here, by
example using Dynamic Bayesian Network formalism td?2]
model a sensor that will have a given lifetime.

[15]

[29]

[20]
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